One act at a time. (Jonathan Sacks)

News of Rabbi Lord Jonathan Sacks’ passing hit me pretty hard. I had met the man only once, yet through his teachings I felt so close to him. I’ve been reading his book, Lessons in Leadership, once a week for almost a year. I listened to many of his audio classes and interviews, especially enjoying his appearances in secular mediums, like his recent interview with Tim Ferriss.

It’s not difficult to describe why I am so attracted to Rabbi Sacks’ teachings. He was, in my opinion, a great rabbinic leader who made Torah accessible. His ability to dance between biblical sources, academic references, and business lessons was supremely attractive to my modes of thinking, learning, and perceiving the world around me. My worldview was and will continue to be heavily influenced by his work.


I hope that I can play some small part in contributing to Rabbi Sacks’ legacy, which I believe is to embody a fusion of both the Torah of the Jewish people and the wisdom of the world, in thought, speech and action.

The following is a powerful leadership quote from Rabbi Sacks’ essay on this week’s Torah portion, Ḥayei Sara, from his book, Lessons in Leadership:

“Perhaps….the most important point of [parashat Ḥayei Sara] is that large promises—a land, countless children—become real through small beginnings. Leaders begin with an envisioned future, but they also know that there is a long journey between here and there; we can only reach it one act at a time, one day at a time. There is no miraculous shortcut—and if there were, it would not help.”

This quote is apropos to so many current events in the world, as well as past and current events in my own life. And it resonates with me in an especially deep way as it connects to my current work with entrepreneurs on the theme of “growth”.

My name, Etan, in Hebrew is spelled איתן (spelled Alef – yud – tav – nun). Also, איתן was one of Abraham’s names. As I learned from Rabbi Moshe Schlass years ago on the streets of Jerusalem’s old city, the letters of my name represent the beginnings of future tense conjugations of Hebrew words:

  • א (Alef) = I will be…
  • י (Yud) = He/She will be…
  • ת (Tav) = You will be…
  • ן (Nun) = We will be…

Back to the Sacks’ quote and the theme of growth—we don’t know where tomorrow’s blessing will come from. Predictive data models based on past performance can take us only so far when it comes to estimating new revenue, customers, or other metrics we are tracking (and working to get more of) in a business.

The smartest data scientists, economists, and analysts will tell you the sameprediction isn’t perfect. With the current rise of AI, better prediction is becoming cheaper, but it’s still prediction, which is and will always be imperfect. I’m bringing up prediction here because I often see businesses fall into the trap of putting the “prediction work” (aka business intelligence, forecasting, etc.) in the category of “execution”. I believe that “prediction work” should be bucketed as “vision” (and not “execution”).

Great entrepreneurs and investors know that even the best ideas are free, and without execution they are worthless. You don’t know; you can’t know what will happen tomorrow, next month, next year, next decade, etc.

What Sacks is teaching us through the story of Abraham, is that we need both vision and day-to-day action, and further, we need to understand which is which, and which is real at any given moment. We can emphasize maintaining a strong and clear vision, putting the actual work in, embracing uncertainty and obstacles, and be ready to receive blessing whenever it comes.

Why I’m excited about data science

What’s all the rage with data science? And what exactly is data science? In this post, I can’t promise to answer either of those questions in a way that will be satisfactory to you… ha! What I will share is what excites me about the field’s study and why I think its applications will become an increasingly important part of my work from here on out.

Data science: it’s a thing.

As you can see in the above trend, the term “data science” as a topic has exploded in interest over the past decade. In an oft-quoted 2012 HBR article by academic Thomas H. Davenport and DJ Patil, the former Chief Data Scientist of the United States Office of Science and Technology Policy, the role of the data scientist will be the “sexiest job of the 21st century“.

Data science as the ego-killer

On a personal level, and regardless of my own data science skills (at present I’d consider myself an amateur and aspiring promoter of the discipline at best), I’m excited about data science because I believe that it is far more than just a “sexy job”. I believe that data science is becoming an increasingly pervasive force that is shaping the way we as individuals and groups make sense of the world around us. I’ve witnessed this force begin to emerge in business and capital markets, and I hope that it will also positively impact governments and societies on a much larger scale in the future.

I see data science as the pursuit of truth; its practice being to seek out and pay attention to the voices of empirical evidence — not those voices which scream loudest. To leverage data science is to seek influence, not power. Data science is changing the way we persuade, and are persuaded by others. I believe that “data-driven decision making” should be as much of an educational requirement as algebra is today, perhaps more so (reference: Annie Duke’s Alliance for Decision Education!).

Ben Jaffe, host of the Linear Digressions podcast wonderfully articulates a worldview and approach that relies on data science, explaining, “…we [all] have cognitive biases… logical weaknesses… pride… and that’s why we have things like the scientific method and statistical rigor: to compensate for our deficiencies as humans. And one of those deficiencies is that we see ourselves as neutral, even though just like the algorithms we build, we reflect the world that we are steeped in.” (Note: I expanded Jaffe’s quote beyond its original context, which was about proactively lessening racial discrimination through the use of data.)

Data informs how (not what) you build

Please don’t get me wrong. I believe that data and experimentation support vision, but do not replace vision. Data science itself requires creativity, but does not replace creativity. And specific to business, I’d argue that qualitative based vision is absolutely a requirement of any successful venture, but that there are many ways to build towards vision. And that holds true especially when an entrepreneur is working to achieve something that hasn’t been done before.

I started my career in construction management — working on teams that oversaw complex multi-million dollar projects, where architects, designers and their clients dreamed up details of how a physical space should look, feel, and be built. We’d be handed huge stacks of architectural drawings, specification binders, and material samples dictating nearly every detail of a project. At times it felt like a real life, more challenging version of building a Lego set (with the primary challenge being the ever complex variable of people management).

But outside of construction, manufacturing, and a select few other fields, life and progress do not have the luxury of moving forward with so many knowns. In company-building, for example, the chief executive may have a very clear vision of what they want to accomplish (in terms of business milestones, for example), and perhaps of certain aspects of which path they want to take (in terms of organizational structure and culture, for example), but will not have detailed plans and specs on how to go about building towards that vision.

I think this experience of transitioning from construction management (an environment with instructions) into technology startups (an environment without instructions), has significantly contributed towards my attraction to data. Not knowing what to do or what to build can be disorienting, and as organizations continue to move away from top-down hierarchies, it’s becoming increasingly important to find better ways to lead, manage and build. Whether in the discipline of online customer acquisition, my specialty, or some other aspect of company-building, learning to ask smart questions and looking for answers in the Data provides the closest thing to instructions.

What’s the difference between data science and other “data stuff”?

Over the past six years as a growth marketing practitioner, I’ve definitely come a long way in understanding how to use data in my every day work, in campaign and funnel analysis, shaping marketing experiments, crafting data-infused educational content, and in making discoveries of data patterns that help inform strategy. Has any of that been data science?

In the Davenport and Patil article I mentioned above (the one about data science being sexy), here’s how those guys define the real stuff: “More than anything, what data scientists do is make discoveries while swimming in data. It’s their preferred method of navigating the world around them. At ease in the digital realm, they are able to bring structure to large quantities of formless data and make analysis possible. They identify rich data sources, join them with other, potentially incomplete data sources, and clean the resulting set. In a competitive landscape where challenges keep changing and data never stop flowing, data scientists help decision makers shift from ad hoc analysis to an ongoing conversation with data.” (Emphasis my own)

When referencing that definition of data science and asking myself if my data-related work in the past as a marketing professional has been “real” data science, I ask myself, was my fourth grade science fair project “real” science? Hell yes. I’m proud of what I accomplished in fourth grade science. So too am I proud of the “data science light” work that I’ve done over the past several years, even if the work led to relatively minor value-adding insights. That said, from here on out I expect to that I will require far more intention on a personal level, surrounding myself with a high caliber of talented people well-versed in data science, increasing my fluency in various aspects of the field, in order to deliver insights of substance and significant value. And to me, progressing along this path and knowing that I’ll be able to add more value is exciting.

Let’s get philosophical (again)

Back to my point about data science as the pursuit of truth… I believe that to succeed in data science in any capacity, even if (or especially if!) it’s just working in an organization that pays attention to its data, a deep level of self awareness and humility is required. When seeking out answers to a question, so many of us think we know, want to be one that knows, and convince ourselves of some supposed truth. These motives (be it for money, status, or other) and unconscious biases lead to a place of overconfidence. My definition of overconfidence is any degree of confidence that comes from thinking we know something that we don’t, and that can be a drug. It feels good, and it might win material reward and popularity contests, but it can also lead to systematic failure. Daniel Kahneman discusses this at length in his Nobel-prize winning work, Thinking, Fast and Slow. While this is not a self-help book, an implicit takeaway from it might be that by training ourselves to be more analytical and deliberate in judgement, we can make better decisions and lead happier lives. The study and application of data science, I believe, lies at the very core of this training.

I think it’s also important to avoid analysis paralysis. Data science isn’t for every situation, and an important part of what can make the applied science great is knowing where to apply it. Additionally, there’s a cost to collecting more data and running analyses— oftentimes it’s better to make a decision with inaccurate data, partial information, or no data at all. But even then, wouldn’t it be awesome to have the ability to know when to walk away from the data, or the potential answers the data might provide? How many of us are confident in saying “I don’t know; let’s look at the data”? How many of us build confidence through inquisitiveness; through not knowing an answer? As someone who’s spent a lot of time drumming and studying the drumming greats as a teenager, there’s an analogy I can’t resist here, which is that the best drummers know how to play softly and when to leave empty space.

The next big thing: doing data science in your underpants

I don’t believe that data science will ever provide all the answers we seek, but I predict that in the coming years it will help us unlock puzzles and challenges in mind-blowing ways that are currently unimaginable. I believe that data science will help clarify realities that may have been previously concealed. And in terms of data science being a gold rush of sorts, I think that it will actually be part of a new software revolution, in which companies won’t have to adapt their problem-solving needs to a particular program, but rather the program will adapt to the needs of the company. I believe that data-driven companies will far outperform their non data-driven counterparts.

Jose Quesada, founder and CEO of Data Science Retreat, on the SDS podcast, talks about why data science is going to be the next big thing: “The next [technology] wave… machine learning, makes websites and apps look ridiculously underpowered by comparison. We can build machines that can see the world. That can identify objects. That can understand your language as you interact with things like Alexa. This amount power is actually in the hands of anybody with a computer. So you can literally be at your kitchen table with a laptop, running a deep-learning model detecting something that is needed for you to solve a problem, because of open source libraries and pretrained models. You can literally be in your underpants or at your kitchen table, solving really important problems that were impossible to solve just five years ago.”

Here here to making data more useful, and to the pursuit of our refined individual and collective character through the practice of data science! As enthused as I am to publish this post and tell the world why I’m excited about data science, I’m even more excited to actually do the work. Surely I was overconfident about one or more things in this piece — something which I thought I knew but will soon be kicking myself for being too sure of. I guess that’s what subsequent posts are for.